|
|
|
|
1, 3, 9, 3, 9, 27, 9, 21, 63, 27, 81, 189, 63, 189, 441, 21, 63, 1323, 567, 1323, 3969, 1701, 3969, 1323, 441, 9261, 27783, 1323, 3087, 9261, 441, 273, 819, 1323, 27783, 64827, 27783, 583443, 1361367, 9261, 27783, 4084101, 1750329, 583443, 1361367, 583443, 194481, 17199, 5733, 453789, 9529569, 453789, 1361367, 28588707, 1361367, 120393, 280917, 453789, 1361367
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 0..4096
|
|
FORMULA
|
a(n) = A248101(A277324(n)).
a(n) = A284554((2*n)+1).
Other identities. For all n >= 0:
A001222(a(n)) = A284566(n).
|
|
MATHEMATICA
|
a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a[2 n + 1], {n, 0, 58}] (* Michael De Vlieger, Apr 05 2017 *)
|
|
PROG
|
(PARI) A284564(n) = A284554(n+n+1); \\ Other code as in A284554.
(Scheme)
(define (A284564 n) (A248101 (A277324 n)))
(define (A284564 n) (A284554 (+ n n 1)))
|
|
CROSSREFS
|
Cf. A001222, A248101, A277324, A284554, A284563, A284566.
Sequence in context: A179802 A010707 A097665 * A170862 A083996 A010259
Adjacent sequences: A284561 A284562 A284563 * A284565 A284566 A284567
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Antti Karttunen, Mar 29 2017
|
|
STATUS
|
approved
|
|
|
|