login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = A247503(A277324(n)).
5

%I #7 Apr 06 2017 21:21:52

%S 2,2,2,10,10,10,50,10,10,250,250,50,250,250,50,110,110,250,6250,1250,

%T 1250,31250,6250,550,2750,6250,6250,13750,2750,2750,6050,110,110,

%U 30250,68750,13750,343750,781250,156250,151250,151250,781250,19531250,1718750,343750,8593750,756250,6050,30250,756250,1718750,3781250,3781250,8593750,18906250,151250

%N a(n) = A247503(A277324(n)).

%H Antti Karttunen, <a href="/A284563/b284563.txt">Table of n, a(n) for n = 0..4096</a>

%F a(n) = A247503(A277324(n)).

%F a(n) = A284553((2*n)+1).

%F Other identities. For all n >= 0:

%F A001222(a(n)) = A284565(n).

%t a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a[2 n + 1], {n, 0, 55}] (* _Michael De Vlieger_, Apr 05 2017 *)

%o (PARI) A284563(n) = A284553(n+n+1); \\ Other code as in A284553.

%o (Scheme)

%o (define (A284563 n) (A247503 (A277324 n)))

%o (define (A284563 n) (A284553 (+ n n 1)))

%Y Odd bisection of A284553.

%Y Cf. A001222, A247503, A277324, A284564, A284565.

%K nonn

%O 0,1

%A _Antti Karttunen_, Mar 29 2017