login
A284504
Expansion of Product_{k>=0} (1 - x^(7*k+6)) in powers of x.
6
1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, -1, 3, -1, 0, 0, 0, 0, -2, 3, -1, 0, 0, 0, 0, -3, 4, -1, 0, 0, 0, 1, -4, 4, -1, 0, 0, 0, 1, -5, 5, -1, 0, 0, 0, 2, -7, 5
OFFSET
0,34
LINKS
FORMULA
a(n) = -(1/n) * Sum_{k=1..n} A284105(k) * a(n-k), a(0) = 1.
MATHEMATICA
CoefficientList[Series[Product[1 - x^(7k + 6), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI) Vec(prod(k=0, 100, 1 - x^(7*k + 6)) + O(x^101)) \\ Indranil Ghosh, Mar 28 2017
CROSSREFS
Cf. Product_{k>=0} (1 - x^(7*k+m)): A284499 (m=1), A284500 (m=2), A284501 (m=3), A284502 (m=4), A284503 (m=5), this sequence (m=6).
Cf. A281245.
Sequence in context: A291748 A124744 A124788 * A281245 A284499 A280457
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Mar 28 2017
STATUS
approved