login
A284501
Expansion of Product_{k>=0} (1 - x^(7*k+3)) in powers of x.
6
1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, -1, 0, 0, 2, 0, 0, -1, -1, 0, 0, 2, 0, 0, -1, -1, 0, 0, 3, 0, 0, -2, -1, 0, 0, 3, 0, 0, -3, -1, 0, 1, 4, 0, 0, -4, -1, 0, 1, 4, 0, 0, -5, -1, 0, 2, 5, 0, 0, -7, -1, 0, 3, 5, 0, 0, -8, -1, 0, 5
OFFSET
0,28
LINKS
FORMULA
a(n) = -(1/n)*Sum_{k=1..n} A284444(k)*a(n-k), a(0) = 1.
MATHEMATICA
CoefficientList[Series[Product[1 - x^(7k + 3), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI) Vec(prod(k=0, 100, 1 - x^(7*k + 3)) + O(x^101)) \\ Indranil Ghosh, Mar 28 2017
CROSSREFS
Cf. Product_{k>=0} (1 - x^(7*k+m)): A284499 (m=1), A284500 (m=2), this sequence (m=3), A284502 (m=4), A284503 (m=5), A284504 (m=6).
Cf. A281457.
Sequence in context: A057558 A284502 A281456 * A281457 A159708 A144625
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Mar 28 2017
STATUS
approved