login
A284417
Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with exactly k vertices whose unique descendent is a leaf, n >= 1, 0 <= k <= floor((n-1)/2) + delta_{2,n}.
0
1, 0, 2, 3, 6, 16, 48, 145, 420, 60, 1536, 4800, 1440, 19579, 65730, 31500, 840, 290816, 1053696, 698880, 53760, 4942305, 19332936, 16367400, 2388960, 15120, 94689280, 399052800, 410296320, 93542400, 2419200, 2020278931, 9146127870, 11044008360, 3526261200, 200415600, 332640, 47523053568, 230339788800, 319018106880, 133013422080, 12986265600, 127733760
OFFSET
1,3
COMMENTS
Column k=0 is A052318(n) for n>2.
Row sums = n^(n-1) = A000169(n).
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 183.
FORMULA
E.g.f. satisfies: A(x,y) = x exp(A(x,y)) - x^2 + y x^2.
EXAMPLE
Triangle begins
1,
0, 2,
3, 6,
16, 48,
145, 420, 60,
1536, 4800, 1440,
19579, 65730, 31500, 840,
290816, 1053696, 698880, 53760,
...
T(3,1)=6 because there are 6 labeled rooted trees (paths) o-o-o and these 6 trees have 1 vertex whose only descendent is a leaf. T(3,0) = 3 because there are 3 labeled trees of the form
o
/ \
o o
and these 3 trees have no such vertices.
MATHEMATICA
nn = 10; Range[0, nn]! CoefficientList[Series[-z^2 + u z^2 - ProductLog[-E^((-1 + u) z^2) z], {z, 0, nn}], {z, u}] // Grid
CROSSREFS
Cf. A055302.
Sequence in context: A159342 A089872 A006402 * A219024 A145860 A305190
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 26 2017
STATUS
approved