This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284311 Array T(n,k) read by antidiagonals (downward): T(1,k) = A005117(k+1) (squarefree numbers > 1); for n > 1, columns are nonsquarefree numbers (in ascending order) with exactly the same prime factors as T(1,k). 10
 2, 3, 4, 5, 9, 8, 6, 25, 27, 16, 7, 12, 125, 81, 32, 10, 49, 18, 625, 243, 64, 11, 20, 343, 24, 3125, 729, 128, 13, 121, 40, 2401, 36, 15625, 2187, 256, 14, 169, 1331, 50, 16807, 48, 78125, 6561, 512, 15, 28, 2197, 14641, 80, 117649, 54, 390625, 19683, 1024 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A permutation of the natural numbers > 1. T(1,k)= A005117(m) with m > 1; terms in column k = T(1,k) * A162306(T(1,k)) only not bounded by T(1,k). Let T(1,k) = b. Terms in column k are multiples of b and numbers c such that c | b^e with e >= 0. Alternatively, terms in column k are multiples bc with c those numbers whose prime divisors p also divide b. - Michael De Vlieger, Mar 25 2017 LINKS Alois P. Heinz, Antidiagonals n = 1..141, flattened FORMULA From Antti Karttunen, Apr 17 2017: (Start) A(1,k) = A005117(1+k), A(n,k) = A065642(A(n-1,k)). A(A008479(n), A285329(n)) = n for all n >= 2. (End) EXAMPLE Array starts:     2    3     5  6      7  10       11        13  14  15     4    9    25 12     49  20      121       169  28  45     8   27   125 18    343  40     1331      2197  56  75    16   81   625 24   2401  50    14641    371293  98 135    32  243  3125 36  16807  80   161051   4826809 112 225    64  729 15625 48 117649 100  1771561  62748517 196 375   128 2187 78125 54 823543 160 19487171 815730721 224 405 Column 6 is: T(1,6) = 2*5; T(2,6) = 2^2*5; T(3,6) = 2^3*5; T(4,6) = 2*5^2; T(5,6) = 2^4*5, etc. MATHEMATICA f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs[k], While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Mar 25 2017 *) PROG (Scheme) (define (A284311 n) (A284311bi  (A002260 n) (A004736 n))) (define (A284311bi row col) (if (= 1 row) (A005117 (+ 1 col)) (A065642 (A284311bi (- row 1) col)))) ;; Antti Karttunen, Apr 17 2017 CROSSREFS Cf. A005117 (squarefree numbers), A033845 (column 4), columns 1,2,3,5 are powers of primes, A033846 (column 6), A033847 (column 9), A033849 (column 10). The columns that are powers of primes have indices A071403(n) - 1. - Michel Marcus, Mar 24 2017 See also A007947; the k-th column of the array corresponds to the numbers with radical A005117(k+1). - Rémy Sigrist, Mar 24 2017 Cf. A284457 (this sequence read by antidiagonals upwards), A285321 (a similar array, but columns come in different order). Cf. A065642. Cf. A008479 (index of the row where n is located), A285329 (of the column). Sequence in context: A046021 A319023 A266531 * A174225 A182945 A052270 Adjacent sequences:  A284308 A284309 A284310 * A284312 A284313 A284314 KEYWORD nonn,tabl AUTHOR Bob Selcoe, Mar 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 17:27 EST 2019. Contains 320222 sequences. (Running on oeis4.)