login
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 865", based on the 5-celled von Neumann neighborhood.
5

%I #10 May 04 2024 20:55:59

%S 1,0,3,5,10,29,42,119,171,477,682,1909,2730,7637,10922,30677,43946,

%T 122229,174762,488829,699066,1955159,2796219,7853397,11250366,

%U 31290717,44739306,125138261,178956970,500520277,715827882,2010469717,2880088746,8010421589

%N Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 865", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A284301/b284301.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A284301/a284301.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Chai Wah Wu_, May 04 2024: (Start)

%F a(n) = a(n-2) + 256*a(n-8) - 256*a(n-10) for n > 36.

%F G.f.: (16384*x^36 + 2048*x^35 - 11264*x^34 - 2048*x^33 - 768*x^32 + 512*x^31 - 256*x^30 + 1536*x^29 - 4160*x^28 - 2056*x^27 + 44*x^26 + 8*x^25 + 3*x^24 - 2*x^23 + x^22 - 38*x^21 + 16*x^20 + 8*x^19 - 96*x^17 - 416*x^13 + 256*x^12 + 152*x^11 - x^10 + 358*x^9 - 127*x^8 + 90*x^7 + 32*x^6 + 24*x^5 + 7*x^4 + 5*x^3 + 2*x^2 + 1)/(256*x^10 - 256*x^8 - x^2 + 1). (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 865; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

%Y Cf. A284299, A284300, A284302.

%K nonn,easy

%O 0,3

%A _Robert Price_, Mar 24 2017