%I #23 Sep 08 2022 08:46:19
%S 83,89,181,281,283,383,389,487,587,683,787,809,811,821,823,827,829,
%T 839,853,857,859,863,877,881,883,887,983,1087,1181,1187,1283,1289,
%U 1381,1481,1483,1487,1489,1583,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867
%N Primes containing a digit 8.
%C Subsequence of A011538 and A062677.
%C Differs from A062677 which contains also the composites 6889 = 83^2, 7387 = 83*89, 23489=83*283, 25187=89*283, 31789 = 83*383 etc. - _R. J. Mathar_, Mar 27 2017
%H Robert Israel, <a href="/A284292/b284292.txt">Table of n, a(n) for n = 1..10000</a>
%p isA284292 := proc(n)
%p if isprime(n) then
%p convert(convert(n,base,10),set) ;
%p if 8 in % then
%p true;
%p else
%p false;
%p end if;
%p else
%p false;
%p end if;
%p end proc:
%p for n from 1 to 2000 do
%p if isA284292(n) then
%p printf("%d,",n) ;
%p end if;
%p end do: # _R. J. Mathar_, Mar 27 2017
%t Select[Prime@ Range@ 500, MemberQ[ IntegerDigits@ #, 8] &] (* _Giovanni Resta_, Mar 25 2017 *)
%o (Magma) [p: p in PrimesUpTo(10000) | 8 in Intseq(p)]
%o (Python)
%o from sympy import primerange
%o print([n for n in primerange(2, 2000) if '8' in str(n)]) # _Indranil Ghosh_, Mar 25 2017
%Y Cf. Primes containing a digit k for k = 0 - 9: A056709 (k = 0), A208270 (k = 1), A208272 (k = 2), A212525 (k = 3), A284290 (k = 4), A257667 (k = 5), A284291 (k = 6), A257668 (k = 7), this sequence (k = 8), A106093 (k = 9).
%K nonn,base
%O 1,1
%A _Jaroslav Krizek_, Mar 25 2017