%I #14 Mar 28 2017 14:53:18
%S 0,0,2,0,2,3,4,0,2,6,7,5,5,6,6,0,2,8,9,9,10,11,11,7,7,11,12,9,8,9,8,0,
%T 2,10,12,11,13,17,16,12,13,18,20,16,15,17,15,9,9,15,17,16,17,19,18,12,
%U 11,16,17,13,11,12,10,0,2,12,15,14,17,22,21,15,17,25,27,24,23,26,22,15,16,24,29,26,28,32,30,21,20,28,30,24,21,23,19,11,11,19
%N Sum of coefficients > 1 in the Stern polynomial B(2n+1,x): a(n) = A275812(A277324(n)).
%C Sum of terms larger than one on row 2n+1 of table A125184.
%H Antti Karttunen, <a href="/A284268/b284268.txt">Table of n, a(n) for n = 0..8192</a>
%F a(n) = A284272((2*n)+1).
%F a(n) = A275812(A277324(n)).
%F Other identities. For all n >= 0:
%F A007306(1+n) = A284267(n) + a(n).
%t A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ (A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after _Jean-François Alcover_, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; A275812[n_]:= PrimeOmega[n] - If[n<2, 0,Count[Transpose[FactorInteger[n]][[2]], 1]]; Table[A275812[A260443[2n + 1]], {n, 0, 150}] (* _Indranil Ghosh_, Mar 28 2017 *)
%o (PARI) A284268(n) = A284272(n+n+1); \\ Other code as in A284272.
%o (Scheme)
%o (define (A284268 n) (A284272 (+ n n 1)))
%o (define (A284268 n) (A275812 (A277324 n)))
%Y Cf. A007306, A125184, A260443, A275812, A277324, A284267.
%Y Odd bisection of A284272.
%K nonn
%O 0,3
%A _Antti Karttunen_, Mar 25 2017