This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284267 Number of terms with coefficient 1 in the Stern polynomial B(2n+1,x): a(n) = A056169(A277324(n)) 5
 1, 2, 1, 3, 2, 2, 1, 4, 3, 1, 1, 2, 2, 2, 1, 5, 4, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 6, 5, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 7, 6, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of 1's on row 2n+1 of table A125184. LINKS Antti Karttunen, Table of n, a(n) for n = 0..8192 FORMULA a(n) = A284271((2*n)+1). a(n) = A056169(A277324(n)). Other identities. For all n >= 0: A007306(1+n) = a(n) + A284268(n). MATHEMATICA A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_]:= A003961[n] = Times @@ (A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; a[n_]:= If[n<2, 0, Count[Transpose[FactorInteger[n]][[2]], 1]]; A277324[n_]:=A260443[2n + 1]; Table[a[A277324[n]], {n, 0, 150}] (* Indranil Ghosh, Mar 28 2017 *) PROG (PARI) A284267(n) = A284271(n+n+1); \\ Other code as in A284271. (Scheme) (define (A284267 n) (A284271 (+ n n 1))) (define (A284267 n) (A056169 (A277324 n))) CROSSREFS Cf. A007306, A056169, A125184, A260443, A277324, A284268. Odd bisection of A284271. Sequence in context: A261337 A260088 A272911 * A296525 A175548 A038571 Adjacent sequences:  A284264 A284265 A284266 * A284268 A284269 A284270 KEYWORD nonn AUTHOR Antti Karttunen, Mar 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 18:51 EST 2019. Contains 320328 sequences. (Running on oeis4.)