login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284264 a(n) = A001222(A283983(n)). 5
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 2, 1, 3, 1, 2, 0, 2, 2, 2, 0, 3, 0, 0, 0, 1, 1, 3, 1, 4, 2, 4, 1, 5, 3, 5, 1, 5, 2, 3, 0, 3, 2, 4, 2, 5, 2, 4, 0, 3, 3, 3, 0, 4, 0, 0, 0, 1, 1, 4, 1, 5, 3, 5, 1, 6, 4, 8, 2, 7, 4, 5, 1, 6, 5, 8, 3, 10, 5, 7, 1, 7, 5, 8, 2, 7, 3, 4, 0, 4, 3, 6, 2, 8, 4, 7, 2, 8, 5, 9, 2, 8, 4, 5, 0, 5, 3, 6, 3, 7, 3, 6, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

COMMENTS

a(n) = Sum_{c} floor(c/2), where c ranges over each coefficient of terms c * x^k in the Stern polynomial B(n,x), thus sum of the halved terms (for odd terms floored down) on row n of table A125184.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8192

Index entries for sequences related to binary expansion of n

FORMULA

a(n) = A001222(A283983(n)).

Other identities and observations. For all n >= 0:

a(2n) = a(n).

a(n) = (1/2) * (A002487(n) - A277700(n)).

2*a(n) <= A284272(n).

MATHEMATICA

A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ ( A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; A000188[n_]:= Sum[Boole[Mod[i^2, n] == 0], {i, n}]; Table[PrimeOmega[A000188[A260443[n]]], {n, 0, 120}] (* Indranil Ghosh, Mar 28 2017 *)

PROG

A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus

A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.

A000188(n) = core(n, 1)[2]; \\ This function from Michel Marcus, Feb 27 2013

A283983(n) = A000188(A260443(n));

A284264(n) = bigomega(A283983(n));

(Scheme) (define (A284264 n) (/ (- (A002487 n) (A277700 n)) 2))

CROSSREFS

Cf. A000188, A002487, A001222, A125184, A260443, A277700, A283983, A284265 (odd bisection), A284272.

Cf. A023758 (gives the positions of zeros).

Sequence in context: A091890 A029431 A091492 * A273302 A025086 A035699

Adjacent sequences: A284261 A284262 A284263 * A284265 A284266 A284267

KEYWORD

nonn

AUTHOR

Antti Karttunen, Mar 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:27 EST 2022. Contains 358671 sequences. (Running on oeis4.)