

A284210


Number of subgroups of order n of the symmetric group Sym(n) on n symbols.


2



1, 1, 1, 7, 6, 280, 120, 25335, 11200, 276696, 362880, 374838255, 39916800, 2414617920, 11721790080
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

The diagonal of A243748 (once the 0's for nondivisors of n are filled in).  R. J. Mathar, Mar 30 2017


LINKS

Table of n, a(n) for n=1..15.


FORMULA

If n is prime, A284210(n) = (n2)!.


EXAMPLE

The group Sym(4) contains 3 cyclic groups of order 4, 3 nonnormal elementary abelian groups of order 4 and one normal group of order 4, so A284210(4) = 3 + 3 + 1 = 7.


PROG

(GAP) List([1..14], n > Sum(List(Filtered(ConjugacyClassesSubgroups(SymmetricGroup(n)), c > Size(Representative(c)) = n)), c > Size(c)));


CROSSREFS

Sequence in context: A249992 A223531 A130553 * A002394 A274210 A105167
Adjacent sequences: A284207 A284208 A284209 * A284211 A284212 A284213


KEYWORD

nonn,more


AUTHOR

Jens Voß, Mar 23 2017


STATUS

approved



