OFFSET
1,6
COMMENTS
Sequence represents d(n, 1, 1) where d(n, i, j) = (Sum_{k=1..n} q(k+j-q(k))) mod (n*i) where q(k) = A005185(k).
LINKS
Altug Alkan, Table of n, a(n) for n = 1..10000
Robert Israel, Illustration Of Residue Classes Modulo 8
FORMULA
a(n) = A280706(n) mod n. - Antti Karttunen, Mar 22 2017
MAPLE
N:= 1000: # to get a(1) to a(N)
B[1]:= 1:
B[2]:= 1:
for n from 3 to N do
B[n]:= B[n-B[n-1]] + B[n-B[n-2]];
od:
seq(add(B[k+1-B[k]], k=1..n) mod n, n=1..N); # Robert Israel, Mar 22 2017
MATHEMATICA
q[n_]:=If[n<3, 1, q[n - q[n - 1]] + q[n - q[n - 2]]]; a[n_]:=Mod[Sum[q[k + 1 - q[k]], {k, n}], n]; Table[a[n], {n, 100}] (* Indranil Ghosh, Mar 21 2017 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 21 2017
STATUS
approved