login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284170 Array read by antidiagonals: T(i,j) is the largest prime in the sequence defined by a(1) = prime(i), a(2) = prime(j), a(n) = A006530(a(n-1)+a(n-2)+1) for n>=3, or 0 if that sequence contains arbitrarily large primes. 1
5, 43, 43, 5, 43, 5, 7, 43, 43, 43, 43, 41, 131, 43, 43, 13, 43, 43, 43, 41, 13, 17, 43, 41, 43, 131, 43, 137, 43, 43, 131, 43, 43, 43, 43, 43, 23, 43, 137, 43, 131, 43, 41, 67, 151, 29, 43, 131, 43, 41, 131, 137, 131, 43, 29, 137, 41, 137, 41, 151, 43, 131, 43, 137, 73, 43, 37, 43, 43, 131, 43, 47 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: the sequence always eventually repeats, so T(i,j) > 0.

LINKS

Robert Israel, Table of n, a(n) for n = 1..14196 (first 168 antidiagonals, flattened)

MathOverflow, If p_n is the largest prime factor of p_{n-1}+p_{n-2}+m, then p_n is bounded

EXAMPLE

T(1,2) = 43 because the sequence in this case starts 2,3,3,7,11,19,31,17,7, and then repeats 5,13,19,11,31,43,5,7,13,7,7 in a cycle.

Array starts

5   43   5  43  43  13 137  43 151  29 ...

43  43  43  43  41  43  43  67  43  73 ...

5   43 131  43 131  43  41 131 137 137 ...

7   41  43  43  43  43 137  43 131  67 ...

43  43  41  43 131 131 131  43 131 151 ...

13  43 131  43  41  43  43  43  73  73 ...

17  43 137  43 151  47  43  41  41 131 ...

43  43 131  41  43  41  43  41  67 137 ...

23  43 137 131  43 151 137 137 197 137 ...

29  41  43 137  73  43 131  41 131 389 ...

MAPLE

M:= 20: # to get the first M antidiagonals

with(queue):

backprop:= proc(r, p)

  local t; global F;

  for t in Parents[r] do

    if F[t] < p then

      F[t]:= p;

      procname(t, p);

    fi

  od

end proc:

Verts:= {seq(seq([ithprime(i), ithprime(j)], i=1..M), j=1..M)}:

for v in Verts do F[v]:= max(v); Parents[v]:= {} od:

Agenda:= new(op(Verts)):

while not empty(Agenda) do

  t:= dequeue(Agenda);

  r:= [t[2], max(numtheory:-factorset(t[1]+t[2]+1))];

  if member(r, Verts) then

    Parents[r]:= Parents[r] union {t};

  else

    Verts:= Verts union {r};

    Parents[r]:= {t};

    enqueue(Agenda, r);

    F[r]:= max(r);

  fi;

  backprop(r, F[r]);

od:

seq(seq(F[[ithprime(m-j), ithprime(j)]], j=1..m-1), m=2..M+1);

CROSSREFS

Cf. A006530.

Sequence in context: A216334 A132487 A178614 * A067927 A038546 A022891

Adjacent sequences:  A284167 A284168 A284169 * A284171 A284172 A284173

KEYWORD

nonn,tabl

AUTHOR

Robert Israel, Mar 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:30 EST 2019. Contains 329958 sequences. (Running on oeis4.)