login
A284124
Remainder when 4*n is divided by A005185(n).
1
0, 0, 0, 1, 2, 0, 3, 2, 0, 4, 2, 0, 4, 0, 0, 1, 8, 6, 10, 8, 0, 4, 8, 0, 2, 6, 12, 0, 4, 8, 4, 9, 13, 16, 14, 11, 8, 20, 9, 6, 3, 7, 4, 8, 12, 16, 20, 0, 4, 0, 24, 12, 4, 6, 10, 0, 4, 22, 12, 16, 20, 24, 12, 25, 12, 36, 23, 8, 3, 0, 25, 22, 12, 23, 20, 31, 14, 32, 29, 19, 16
OFFSET
1,5
FORMULA
a(n) = A008586(n) mod A005185(n) for n > 0.
EXAMPLE
a(5) = 2 because remainder when 4*5 = 20 is divided by A005185(5) = 3 is 2.
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Table[Mod[4 n, a@ n], {n, 81}] (* Michael De Vlieger, Mar 20 2017 *)
PROG
(PARI) a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(1000, n, (4*n)%a[n])
CROSSREFS
Sequence in context: A103489 A213944 A127479 * A187637 A338737 A141432
KEYWORD
nonn,look
AUTHOR
Altug Alkan, Mar 20 2017
STATUS
approved