login
A284097
a(n) = Sum_{d|n, d == 1 (mod 5)} d.
19
1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 12, 7, 1, 1, 1, 17, 1, 7, 1, 1, 22, 12, 1, 7, 1, 27, 1, 1, 1, 7, 32, 17, 12, 1, 1, 43, 1, 1, 1, 1, 42, 28, 1, 12, 1, 47, 1, 23, 1, 1, 52, 27, 1, 7, 12, 57, 1, 1, 1, 7, 62, 32, 22, 17, 1, 84, 1, 1, 1, 1, 72, 43, 1, 1, 1, 77, 12, 33, 1
OFFSET
1,6
LINKS
FORMULA
G.f.: Sum_{k>=0} (5*k + 1)*x^(5*k+1)/(1 - x^(5*k+1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023
MATHEMATICA
Table[Sum[If[Mod[d, 5] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
PROG
(PARI) for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 5)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
(Python)
from sympy import divisors
def a(n): return sum([d for d in divisors(n) if d%5==1]) # Indranil Ghosh, Mar 21 2017
CROSSREFS
Cf. Sum_{d|n, d=1 mod k} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), this sequence (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).
Sequence in context: A140213 A331927 A285483 * A091258 A351568 A174544
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 20 2017
STATUS
approved