%I #15 Mar 20 2017 10:50:11
%S 1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,2,2,1,0,0,0,1,2,3,3,2,1,0,0,1,3,5,5,
%T 3,1,0,0,2,5,7,7,5,2,0,1,3,7,11,11,7,3,1,1,5,11,15,15,11,5,1,2,7,15,
%U 22,22,15,7,2,3,11,22,30,30,22,11,4,5,15,30,42,42
%N Number of partitions of n into distinct parts 8k+1 or 8k+7.
%C Convolution of A284093 and A284095.
%H Vaclav Kotesovec, <a href="/A284092/b284092.txt">Table of n, a(n) for n = 0..20000</a>
%F G.f.: Product_{k>0} (1 + x^(8*k - 1)) * (1 + x^(8*k - 7)).
%F a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*3^(1/4)*n^(3/4)) * (1 + (11*Pi/(192*sqrt(3)) - 3*sqrt(3)/(4*Pi))/sqrt(n)). - _Vaclav Kotesovec_, Mar 20 2017
%t CoefficientList[Series[Product[(1 + x^(8*k - 1)) * (1 + x^(8*k - 7)) , {k, 1, 81}], {x, 0, 81}], x] (* _Indranil Ghosh_, Mar 20 2017 *)
%o (PARI) Vec(prod(k=1, 81, (1 + x^(8*k - 1)) * (1 + x^(8*k - 7))) + O(x^82)) \\ _Indranil Ghosh_, Mar 20 2017
%Y Cf. A035453, A284093, A284095.
%Y Cf. Product_{k>0} (1 + x^(m*k - 1)) * (1 + x^(m*k - m + 1)): A003105 (m=3), A000700 (m=4), A203776 (m=5), A098884 (m=6), A281459 (m=7), this sequence (m=8).
%K nonn
%O 0,17
%A _Seiichi Manyama_, Mar 20 2017