login
A284064
Numbers whose smallest decimal digit is 3.
8
3, 33, 34, 35, 36, 37, 38, 39, 43, 53, 63, 73, 83, 93, 333, 334, 335, 336, 337, 338, 339, 343, 344, 345, 346, 347, 348, 349, 353, 354, 355, 356, 357, 358, 359, 363, 364, 365, 366, 367, 368, 369, 373, 374, 375, 376, 377, 378, 379, 383, 384, 385, 386, 387, 388
OFFSET
1,1
COMMENTS
Numbers n such that A054054(n) = 3.
Prime terms are in A106103.
LINKS
MAPLE
L[1]:= {3}: G[1]:= {$4..9}:
for n from 2 to 3 do L[n]:= map(t -> seq(10*t+j, j=3..9), L[n-1]) union map(t -> 10*t+3, G[n-1]);
G[n]:= map(t -> seq(10*t+j, j=4..9), G[n-1])
od:
seq(op(sort(convert(L[n], list))), n=1..3); # Robert Israel, Mar 27 2017
MATHEMATICA
With[{k = 3}, Select[Range@ 388, And[Total@ Take[#, k] == 0, #[[k + 1]] > 0] &@ RotateRight@ DigitCount@ # &]] (* Michael De Vlieger, Mar 20 2017 *) (* or *)
Select[Range[10000], Min[IntegerDigits[#]] == 3 &] (* faster, simpler, Giovanni Resta, Mar 22 2017 *)
PROG
(Magma) [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 3]
(PARI) isok(n) = vecmin(digits(n)) == 3; \\ Michel Marcus, Mar 25 2017
CROSSREFS
Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), this sequence (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).
Sequence in context: A106423 A077328 A106413 * A101968 A103862 A180245
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Mar 19 2017
STATUS
approved