

A284000


a(n) = a(a(nA002828(n))) + a(na(nA002828(n))) with a(1) = a(2) = a(3) = 1, where A002828(n) = the least number of squares that add up to n.


3



1, 1, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 10, 9, 10, 9, 10, 11, 12, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 22, 21, 22, 23, 22, 23, 24, 25, 26, 27, 26, 27, 28, 29, 30, 29, 30, 31, 32, 33, 34, 35, 34, 37, 38, 37, 38, 39, 38, 39, 38, 39, 40, 39, 42, 41, 42
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Does a(n)/n converge to some value near 0.6 ? See for example: a(10) = 6, a(100) = 62, a(1000) = 604, a(10000) = 6050, a(100000) = 60414.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10001


FORMULA

For n <= 3 a(n) = 1, else a(n) = a(a(A255131(n))) + a(na(A255131(n))).


PROG

(Scheme, with memoizationmacro definec)
(definec (A284000 n) (if (<= n 3) 1 (+ (A284000 (A284000 ( n (A002828 n)))) (A284000 ( n (A284000 ( n (A002828 n))))))))


CROSSREFS

Cf. A002828, A004001, A255131, A284006, A284007.
Sequence in context: A309064 A325631 A276073 * A309293 A244904 A238288
Adjacent sequences: A283997 A283998 A283999 * A284001 A284002 A284003


KEYWORD

nonn


AUTHOR

Antti Karttunen, Mar 23 2017


STATUS

approved



