login
A283998
a(n) = n AND A005187(floor(n/2)), where AND is bitwise-and (A004198).
3
0, 0, 0, 1, 0, 1, 4, 4, 0, 1, 8, 8, 8, 8, 10, 11, 0, 1, 16, 16, 16, 16, 18, 19, 16, 16, 18, 19, 24, 25, 26, 26, 0, 1, 32, 32, 32, 32, 34, 35, 32, 32, 34, 35, 40, 41, 42, 42, 32, 32, 34, 35, 48, 49, 50, 50, 48, 49, 50, 50, 56, 56, 56, 57, 0, 1, 64, 64, 64, 64, 66, 67, 64, 64, 66, 67, 72, 73, 74, 74, 64, 64, 66, 67, 80, 81, 82, 82, 80, 81, 82, 82, 88, 88, 88, 89
OFFSET
0,7
FORMULA
a(n) = n AND A005187(floor(n/2)), where AND is bitwise-and (A004198).
a(n) = A283996(n) - A283997(n).
a(n) = A005187(n) - A283996(n) = (A005187(n) - A283997(n))/2.
MATHEMATICA
A[n_]:=2*n - DigitCount[2*n, 2, 1]; Table[BitAnd[n, A[Floor[n/2]]], {n, 0, 100}] (* Indranil Ghosh, Mar 25 2017 *)
PROG
(Scheme) (define (A283998 n) (A004198bi n (A005187 (floor->exact (/ n 2))))) ;; Where A004198bi implements bitwise-AND (A004198).
(PARI) b(n) = if(n<1, 0, b(n\2) + n%2);
A(n) = 2*n - b(2*n);
for(n=0, 100, print1(bitand(n, A(floor(n/2))), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
def A(n): return 2*n - bin(2*n)[2:].count("1")
print([n&A(n//2) for n in range(101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 19 2017
STATUS
approved