login
A283996
a(n) = n OR A005187(floor(n/2)), where OR is bitwise-or (A003986).
3
0, 1, 3, 3, 7, 7, 6, 7, 15, 15, 10, 11, 14, 15, 15, 15, 31, 31, 18, 19, 22, 23, 23, 23, 30, 31, 31, 31, 29, 29, 30, 31, 63, 63, 34, 35, 38, 39, 39, 39, 46, 47, 47, 47, 45, 45, 46, 47, 62, 63, 63, 63, 53, 53, 54, 55, 61, 61, 62, 63, 60, 61, 63, 63, 127, 127, 66, 67, 70, 71, 71, 71, 78, 79, 79, 79, 77, 77, 78, 79, 94, 95, 95, 95, 85, 85, 86, 87, 93, 93, 94, 95
OFFSET
0,3
FORMULA
a(n) = n OR A005187(floor(n/2)), where OR is bitwise-or (A003986).
a(n) = A283997(n) + A283998(n).
a(n) = A005187(n) - A283998(n).
MATHEMATICA
A[n_]:=2*n - DigitCount[2*n, 2, 1]; Table[BitOr[n, A[Floor[n/2]]], {n, 0, 100}] (* Indranil Ghosh, Mar 25 2017 *)
PROG
(Scheme) (define (A283996 n) (A003986bi n (A005187 (floor->exact (/ n 2))))) ;; Where A003986bi implements bitwise-OR (A003986).
(PARI) b(n) = if(n<1, 0, b(n\2) + n%2);
A(n) = 2*n - b(2*n);
for(n=0, 100, print1(bitor(n, A(floor(n/2))), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
def A(n): return 2*n - bin(2*n)[2:].count("1")
print([n|A(n//2) for n in range(101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 19 2017
STATUS
approved