login
Numbers n for which A002487(n-1) AND A002487(n) > 0 where AND is bitwise-and (A004198).
3

%I #13 Mar 23 2017 11:43:52

%S 2,5,6,7,8,11,14,17,18,19,20,23,24,25,26,29,30,31,32,34,35,38,39,40,

%T 41,42,43,44,45,46,47,50,51,52,53,54,55,56,57,58,59,62,63,65,66,67,68,

%U 69,70,71,72,73,74,75,76,77,79,80,81,82,83,86,89,92,95,96,97,98,101,104,107,110,111,112,113,114,116,117,118,119,120

%N Numbers n for which A002487(n-1) AND A002487(n) > 0 where AND is bitwise-and (A004198).

%C Numbers n such that the binary representations of A002487(n-1) and A002487(n) have at least one 1-bit in a common shared position.

%H Antti Karttunen, <a href="/A283974/b283974.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%t a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Flatten@ Position[Table[BitAnd[a[n - 1], a@ n], {n, 120}], k_ /; k > 0] (* _Michael De Vlieger_, Mar 22 2017 *)

%o (Scheme, with _Antti Karttunen_'s IntSeq-library)

%o (define A283974 (NONZERO-POS 1 1 A283988))

%o (PARI) A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));

%o D(n) = if(n<1, 1, sum(k=0, n, binomial(n + k - 1, 2*k)%2))

%o for(n=1, 120, if(bitor(A(n - 1), A(n)) != D(n), print1(n, ", "))) \\ _Indranil Ghosh_, Mar 23 2017

%Y Cf. A283973 (complement).

%Y Cf. A002487, A004198, A007306, A283986, A283987.

%Y Positions of nonzeros in A283988.

%K nonn,base

%O 1,1

%A _Antti Karttunen_, Mar 21 2017