login
A283973
Numbers n such that A007306(n) = A283986(n); positions of zeros in A283988.
5
1, 3, 4, 9, 10, 12, 13, 15, 16, 21, 22, 27, 28, 33, 36, 37, 48, 49, 60, 61, 64, 78, 84, 85, 87, 88, 90, 91, 93, 94, 99, 100, 102, 103, 105, 106, 108, 109, 115, 129, 130, 133, 135, 136, 141, 144, 145, 153, 159, 160, 162, 171, 172, 189, 190, 192, 193, 195, 196, 213, 214, 223, 225, 226, 232, 240, 241, 244, 249, 250, 252, 255, 256
OFFSET
1,2
COMMENTS
Equally, numbers n for which A007306(n) = A283987(n), or equally, numbers n for which A283986(n) = A283987(n).
Numbers n such that the binary representations of A002487(n-1) and A002487(n) have no 1-bits in common shared positions.
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Map[Function[n, If[EvenQ@ n, a[n/2], BitOr[a[#], a[# + 1]] &[(n - 1)/2]]], 2 Range[99] - 1] (* Michael De Vlieger, Mar 22 2017 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A283973 (ZERO-POS 1 1 A283988))
(PARI) A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
D(n) = if(n<1, 1, sum(k=0, n, binomial(n + k - 1, 2*k)%2)) /* A007306 */
for(n=1, 300, if(bitor(A(n - 1), A(n)) == D(n), print1(n, ", "))) \\ Indranil Ghosh, Mar 23 2017
CROSSREFS
Cf. A283974 (complement).
Sequence in context: A178462 A010376 A010388 * A276672 A010400 A010439
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 21 2017
STATUS
approved