login
A283935
Denominators of poly-Bernoulli numbers B_n^(k) with k = 9.
2
1, 512, 10077696, 859963392, 2519424000000000, 335923200000000, 20333569192473600000000, 24787589110824960000000, 1016446075975766016000000000, 6453625879211212800000000, 79890889262435601646115635200000000, 184452269581380898461450240000000
OFFSET
0,2
LINKS
EXAMPLE
B_0^(9) = 1, B_1^(9) = 1/512, B_2^(9) = -18659/10077696, B_3^(9) = 1437155/859963392, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-9), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-9));
for(n=0, 15, print1(denominator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283934.
Sequence in context: A016797 A013789 A330484 * A016833 A103352 A013848
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved