login
A283934
Numerators of poly-Bernoulli numbers B_n^(k) with k = 9.
2
1, 1, -18659, 1437155, -3443781552263, 299038554059, -4578818318657408083, -13134546687973878593, 1056237841304782111497583, -4359513902194586454589, -88697240413616501738435495501197, 635822194381744885857116976721
OFFSET
0,3
LINKS
EXAMPLE
B_0^(9) = 1, B_1^(9) = 1/512, B_2^(9) = -18659/10077696, B_3^(9) = 1437155/859963392, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-9), {m, 0, n}]; Table[Numerator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-9));
for(n=0, 15, print1(numerator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283935.
Sequence in context: A248488 A237700 A248065 * A266061 A267028 A226150
KEYWORD
sign,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved