login
A283933
Denominators of poly-Bernoulli numbers B_n^(k) with k = 8.
2
1, 256, 1679616, 71663616, 41990400000000, 622080000000, 48413259982080000000, 29509034655744000000, 403351617450700800000000, 102438506019225600000, 2882066712209076538460160000000, 6654122279270595182592000000
OFFSET
0,2
LINKS
EXAMPLE
B_0^(8) = 1, B_1^(8) = 1/256, B_2^(8) = -6049/1679616, B_3^(8) = 220961/71663616, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-8), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-8));
for(n=0, 15, print1(denominator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283932.
Sequence in context: A330483 A278142 A013759 * A016832 A103350 A069447
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved