|
|
A283890
|
|
Relative of Hofstadter Q-sequence: a(n) = max(0, n+10001) for n <= 0; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) + a(n-a(n-4)) for n > 0.
|
|
4
|
|
|
10, 10002, 10003, 10004, 10005, 14, 10006, 10007, 10008, 10009, 18, 10010, 10011, 10012, 10013, 22, 10014, 10015, 10016, 10017, 26, 10018, 10019, 10020, 10021, 30, 10022, 10023, 10024, 10025, 34, 10026, 10027, 10028, 37, 10030, 10030, 39
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequences like this are more naturally considered with the first nonzero term in position 1. But this sequence would then match A000027 for its first 10001 terms.
This sequence has some stretches where it is quasilinear, but it appears to be ultimately chaotic.
|
|
LINKS
|
Nathan Fox, Table of n, a(n) for n = 1..50000
|
|
MAPLE
|
A283890:=proc(n) option remember: if n <= 0 then max(0, n+10001): else A283890(n-A283890(n-1)) + A283890(n-A283890(n-2)) + A283890(n-A283890(n-3)) + A283890(n-A283890(n-4)): fi: end:
|
|
CROSSREFS
|
Cf. A005185, A283889, A283891, A283892.
Sequence in context: A076782 A213653 A283889 * A139109 A317959 A119037
Adjacent sequences: A283887 A283888 A283889 * A283891 A283892 A283893
|
|
KEYWORD
|
nonn,look
|
|
AUTHOR
|
Nathan Fox, Mar 19 2017
|
|
STATUS
|
approved
|
|
|
|