This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283803 Expansion of exp( Sum_{n>=1} -A283369(n)/n*x^n ) in powers of x. 3
 1, -1, -256, -531185, -4294403215, -95363000657073, -4738284730302658391, -459981771468075494207385, -79227701254823507875355278590, -22528320196093613328344381426130010, -9999977451048811940735941180766259658078 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..120 FORMULA G.f.: Product_{k>=1} (1 - x^k)^(k^(4*k)). a(n) = -(1/n)*Sum_{k=1..n} A283369(k)*a(n-k) for n > 0. MATHEMATICA CoefficientList[Series[Product[(1 - x^k)^(k^(4k)), {k, 1, 10}], {x, 0, 10}], x] (* Indranil Ghosh, Mar 17 2017 *) PROG (PARI) A(n) = sumdiv(n, d, d^(4*d + 1)); a(n) = if(n<1, 1, -(1/n) * sum(k=1, n, A(k) * a(n - k))); for(n=0, 10, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 17 2017 CROSSREFS Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)): A010815 (m=0), A283499 (m=1), A283534 (m=2), A283536 (m=3), this sequence (m=4). Cf. A283510 (Product_{k>=1} 1/(1 - x^k)^(k^(4*k))). Sequence in context: A100636 A016796 A018877 * A278142 A013759 A283933 Adjacent sequences:  A283800 A283801 A283802 * A283804 A283805 A283806 KEYWORD sign AUTHOR Seiichi Manyama, Mar 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 08:08 EDT 2019. Contains 328146 sequences. (Running on oeis4.)