login
A283775
Numbers k such that floor(k*sqrt(3)) is even.
2
4, 5, 6, 7, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 34, 35, 36, 37, 42, 43, 44, 49, 50, 51, 52, 56, 57, 58, 59, 64, 65, 66, 67, 71, 72, 73, 74, 79, 80, 81, 82, 86, 87, 88, 89, 94, 95, 96, 97, 101, 102, 103, 104, 109, 110, 111, 116, 117, 118, 119, 124, 125
OFFSET
1,1
COMMENTS
Complement of A283776.
LINKS
FORMULA
a(n+1) - a(n) is in {1,4,5} for every n.
MATHEMATICA
r = Sqrt[3]; z = 350; t = Table[Floor[n*r], {n, 1, z}]; u = Mod[t, 2];
Flatten[Position[u, 0]] (* A283775 *)
Flatten[Position[u, 1]] (* A283776 *)
PROG
(PARI) for(n=1, 125, if(floor(n*sqrt(3))%2==0, print1(n, ", "))) \\ Indranil Ghosh, Mar 21 2017
(Python)
import math
from sympy import sqrt
print([n for n in range(1, 126) if int(math.floor(n*sqrt(3)))%2==0]) # Indranil Ghosh, Mar 21 2017
CROSSREFS
Sequence in context: A086101 A131260 A047566 * A037355 A294228 A342575
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 19 2017
STATUS
approved