login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283774 Numbers k such that U(k) == 2 mod 3, where U = A001950 = upper Wythoff sequence. 3
1, 2, 8, 9, 10, 16, 17, 18, 24, 25, 26, 32, 33, 34, 40, 41, 48, 49, 55, 56, 57, 63, 64, 65, 71, 72, 73, 79, 80, 81, 87, 88, 89, 95, 96, 103, 104, 110, 111, 112, 118, 119, 120, 126, 127, 128, 134, 135, 136, 142, 143, 150, 151, 158, 159, 165, 166, 167, 173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The sequences A283772, A283773, A283774 partition the positive integers.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

FORMULA

a(n+1) - a(n) is in {1,6,7} for every n.

MATHEMATICA

r = GoldenRatio^2; z = 350; t = Table[Floor[n*r], {n, 1, z}]; u = Mod[t, 3];

Flatten[Position[u, 0]]  (* A283772 *)

Flatten[Position[u, 1]]  (* A283773 *)

Flatten[Position[u, 2]]  (* A283774 *)

PROG

(PARI) r = (3 + sqrt(5))/2;

for(n=1, 351, if(floor(n*r)%3==2, print1(n, ", "))) \\ Indranil Ghosh, Mar 21 2017

(Python)

import math

from sympy import sqrt

r = (3 + sqrt(5))/2

[n for n in range(1, 351) if int(math.floor(n*r))%3==2] # Indranil Ghosh, Mar 21 2017

CROSSREFS

Cf. A000201, A001622, A283772, A283774.

Sequence in context: A318175 A318182 A047469 * A037456 A277857 A237280

Adjacent sequences:  A283771 A283772 A283773 * A283775 A283776 A283777

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 11:27 EDT 2020. Contains 334592 sequences. (Running on oeis4.)