This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283760 Expansion of (Sum_{i>=1} x^prime(i))*(Sum_{j>=1} x^(j^3)). 3
 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 2, 2, 1, 1, 1, 0, 2, 2, 0, 1, 0, 1, 2, 2, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,30 COMMENTS Number of representations of n as the sum of a prime number and a positive cube. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Ilya Gutkovskiy, Extended graphical example FORMULA G.f.: (Sum_{i>=1} x^prime(i))*(Sum_{j>=1} x^(j^3)). EXAMPLE a(32) = 2 because 32 = 31 + 1^3 = 5 + 3^3. MATHEMATICA nmax = 120; Rest[CoefficientList[Series[Sum[x^Prime[i], {i, 1, nmax}] Sum[x^j^3, {j, 1, nmax}], {x, 0, nmax}], x]] PROG (PARI) concat([0, 0], Vec((sum(i=1, 120, x^prime(i)) * sum(j=1, 120, x^(j^3))) + O(x^121))) \\ Indranil Ghosh, Mar 16 2017 (Scheme) (define (A283760 n) (cond ((< n 2) 0) (else (let loop ((k (A048766 n)) (s 0)) (if (< k 1) s (loop (- k 1) (+ s (A010051 (- n (expt k 3)))))))))) ;; Antti Karttunen, Aug 18 2017 CROSSREFS Cf. A000040, A000578, A064272, A211167. Sequence in context: A079549 A143374 A277899 * A070088 A131851 A104886 Adjacent sequences:  A283757 A283758 A283759 * A283761 A283762 A283763 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Mar 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 14:09 EDT 2019. Contains 324185 sequences. (Running on oeis4.)