login
Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors.
1

%I #4 Mar 14 2017 16:13:00

%S 16,161,1521,15226,150497,1489917,14754038,146079023,1446386879,

%T 14321176544,141798827829,1403999090083,13901477028478,

%U 137643299572877,1362853595880357,13494081631456544,133609537897145821

%N Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors.

%C Column 4 of A283691.

%H R. H. Hardin, <a href="/A283687/b283687.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) +24*a(n-2) +55*a(n-3) -57*a(n-4) -195*a(n-5) -458*a(n-6) +154*a(n-7) +630*a(n-8) +634*a(n-9) -160*a(n-10) -239*a(n-11) -42*a(n-12) -20*a(n-13) -8*a(n-14)

%e Some solutions for n=4

%e ..1..0..0..1. .0..0..0..0. .0..1..0..1. .0..1..0..0. .0..0..0..1

%e ..0..1..0..0. .0..1..0..0. .0..1..0..0. .1..1..0..1. .0..0..1..1

%e ..0..0..0..1. .0..0..0..0. .1..0..0..0. .0..0..0..0. .1..0..1..0

%e ..1..1..1..0. .0..0..0..0. .1..0..0..1. .0..1..1..0. .0..0..1..1

%Y Cf. A283691.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 14 2017