login
A283675
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-x^j)^(j^(k*j)) in powers of x.
5
1, 1, -1, 1, -1, -1, 1, -1, -4, 0, 1, -1, -16, -23, 0, 1, -1, -64, -713, -223, 1, 1, -1, -256, -19619, -64687, -2767, 0, 1, -1, -1024, -531185, -16755517, -9688545, -42268, 1, 1, -1, -4096, -14347883, -4294403215, -30499543213, -2165715003, -759008, 0, 1, -1, -16384
OFFSET
0,9
LINKS
FORMULA
G.f. of column k: Product_{j>=1} (1-x^j)^(j^(k*j)).
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k*d+1)) * A(n-j,k) for n > 0. - Seiichi Manyama, Nov 04 2017
EXAMPLE
Square array begins:
1, 1, 1, 1, ...
-1, -1, -1, -1, ...
-1, -4, -16, -64, ...
0, -23, -713, -19619, ...
0, -223, -64687, -16755517, ...
CROSSREFS
Columns k=0..4 give A010815, A283499, A283534, A283536, A283803.
Rows n=0..1 give A000012, (-1)*A000012.
Main diagonal gives A283720.
Cf. A283674.
Sequence in context: A186372 A200893 A294583 * A294653 A126222 A071637
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 14 2017
STATUS
approved