%I
%S 0,0,403,11886,165152,1712052,15351085,126810474,989755263,7421134282,
%T 53972500634,383258656118,2669593728208,18301919622500,
%U 123810569805676,828107771754630,5484831030514008,36019172324299540,234771330638001725
%N Number of nX4 0..1 arrays with no element unequal to more than four of its kingmove neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
%C Column 4 of A283666.
%H R. H. Hardin, <a href="/A283662/b283662.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A283662/a283662.txt">Empirical recurrence of order 84</a>
%F Empirical recurrence of order 84 (see link above)
%e Some solutions for n=4
%e ..0..0..1..0. .0..1..1..0. .0..0..0..0. .0..1..0..0. .0..1..0..1
%e ..0..1..0..0. .1..1..0..0. .0..1..1..0. .0..1..0..0. .0..1..1..1
%e ..1..0..1..0. .1..1..0..1. .0..0..0..1. .0..1..1..1. .1..0..0..0
%e ..0..0..1..0. .1..1..1..0. .0..0..1..0. .1..0..1..1. .1..0..0..1
%Y Cf. A283666.
%K nonn
%O 1,3
%A _R. H. Hardin_, Mar 13 2017
