login
Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.
1

%I #4 Mar 12 2017 14:29:49

%S 2,88,2875,61592,1185010,20051838,317384829,4754748994,68462751532,

%T 955500406758,13010041583954,173616639167456,2278616911473726,

%U 29489304434111462,377108880886712165,4772989815120393198

%N Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.

%C Column 5 of A283634.

%H R. H. Hardin, <a href="/A283631/b283631.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A283631/a283631.txt">Empirical recurrence of order 63</a>

%F Empirical recurrence of order 63 (see link above)

%e Some solutions for n=4

%e ..1..1..0..0..0. .0..1..0..1..0. .0..0..0..0..0. .1..0..0..0..1

%e ..0..1..0..0..0. .0..0..1..0..0. .0..1..0..1..1. .1..1..0..0..1

%e ..1..0..1..0..1. .1..0..1..0..1. .1..1..0..0..0. .1..0..0..1..0

%e ..1..0..1..0..1. .0..0..1..1..0. .1..0..1..0..0. .1..0..1..0..0

%Y Cf. A283634.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 12 2017