%I #4 Mar 11 2017 08:15:56
%S 12,908,21186,509952,10919674,226897932,4558585174,89724600000,
%T 1736716820366,33188681249924,627668838247742,11769603893466432,
%U 219120313902873796,4054721455598417092,74638990577755174088
%N Number of nX6 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
%C Column 6 of A283572.
%H R. H. Hardin, <a href="/A283570/b283570.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A283570/a283570.txt">Empirical recurrence of order 54</a>
%F Empirical recurrence of order 54 (see link above)
%e Some solutions for n=3
%e ..0..1..0..0..0..0. .0..0..0..1..1..0. .1..0..1..1..1..0. .1..0..0..1..1..0
%e ..0..1..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .1..0..0..0..0..0
%e ..0..1..0..0..0..0. .1..1..1..0..0..1. .1..1..0..0..1..1. .1..0..1..1..1..0
%Y Cf. A283572.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 11 2017