login
Number of nX6 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
1

%I #4 Mar 11 2017 08:15:56

%S 12,908,21186,509952,10919674,226897932,4558585174,89724600000,

%T 1736716820366,33188681249924,627668838247742,11769603893466432,

%U 219120313902873796,4054721455598417092,74638990577755174088

%N Number of nX6 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

%C Column 6 of A283572.

%H R. H. Hardin, <a href="/A283570/b283570.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A283570/a283570.txt">Empirical recurrence of order 54</a>

%F Empirical recurrence of order 54 (see link above)

%e Some solutions for n=3

%e ..0..1..0..0..0..0. .0..0..0..1..1..0. .1..0..1..1..1..0. .1..0..0..1..1..0

%e ..0..1..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .1..0..0..0..0..0

%e ..0..1..0..0..0..0. .1..1..1..0..0..1. .1..1..0..0..1..1. .1..0..1..1..1..0

%Y Cf. A283572.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 11 2017