login
Number of nX4 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
1

%I #4 Mar 11 2017 08:13:52

%S 2,72,674,6812,60802,528436,4441052,36589848,296555892,2373574616,

%T 18804085974,147722885964,1152326125736,8934988081564,68923216977218,

%U 529275667161388,4048382091614590,30857555674174468,234469910144650842

%N Number of nX4 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

%C Column 4 of A283572.

%H R. H. Hardin, <a href="/A283568/b283568.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 12*a(n-1) -16*a(n-2) -148*a(n-3) +122*a(n-4) +8*a(n-5) -1218*a(n-6) +1236*a(n-7) +1851*a(n-8) -3776*a(n-9) +3314*a(n-10) +5408*a(n-11) -7569*a(n-12) -2532*a(n-13) +2620*a(n-14) +320*a(n-15) -256*a(n-16)

%e Some solutions for n=4

%e ..0..1..0..0. .1..0..0..1. .1..0..0..0. .0..0..0..1. .1..0..0..1

%e ..0..0..0..1. .0..0..0..0. .0..0..1..0. .1..0..0..1. .0..0..0..0

%e ..0..1..0..1. .1..1..0..0. .1..1..0..0. .1..1..0..1. .0..0..1..1

%e ..0..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..0..0. .1..0..1..0

%Y Cf. A283572.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 11 2017