login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283526 Pierce expansion of the number Sum_{k >= 1} 1/(2^(2^k - 1)). 2
1, 2, 3, 4, 5, 16, 17, 256, 257, 65536, 65537, 4294967296, 4294967297, 18446744073709551616, 18446744073709551617, 340282366920938463463374607431768211456, 340282366920938463463374607431768211457 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is the Pierce expansion of the number 2*s(2) - 1 = 0.632843018043786287416159475061... where s(u) = Sum_{k>=0) 1/u^(2^k) that has been considered by J. Shallit in A007400. The continued fraction expansion of this number is essentially A006466.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..24

Jeffrey Shallit, Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), no. 2, 209-217.

FORMULA

a(0) = 1, a(2k+1) = 2^(2^k), a(2k+2) = 2^(2^k) + 1.

EXAMPLE

The Pierce expansion of 0.6328430180437862 starts as 1 - 1/2 + 1/(2*3) - 1/(2*3*4) + 1/(2*3*4*5) - 1/(2*3*4*5*16) + ...

MAPLE

L:=[1]: for k from 0 to 6 do: L:=[op(L), 2^(2^k), 2^(2^k)+1]: od: print(L);

MATHEMATICA

{1}~Join~Map[{#, # + 1} &, 2^2^Range[0, 8]] // Flatten (* Michael De Vlieger, Mar 18 2017 *)

CROSSREFS

Cf. A006466, A007400, A076214.

Sequence in context: A177334 A004834 A075687 * A293824 A095181 A240906

Adjacent sequences:  A283523 A283524 A283525 * A283527 A283528 A283529

KEYWORD

nonn

AUTHOR

Kutlwano Loeto, Mar 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 22:36 EST 2020. Contains 331177 sequences. (Running on oeis4.)