%I #4 Mar 09 2017 18:25:30
%S 0,5,270,5988,113984,2032993,34279720,558718061,8877675769,
%T 138361189406,2123703646624,32194034680888,483025956805625,
%U 7184039753675004,106048960050497877,1555282253332563953,22678862678133637034
%N Number of nX4 0..1 arrays with no 1 equal to more than three of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements.
%C Column 4 of A283522.
%H R. H. Hardin, <a href="/A283518/b283518.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 24*a(n-1) -18*a(n-2) -1861*a(n-3) -5151*a(n-4) +53448*a(n-5) +497137*a(n-6) +2079267*a(n-7) +5467509*a(n-8) +9711068*a(n-9) +11318400*a(n-10) +6922557*a(n-11) -2098502*a(n-12) -9203736*a(n-13) -9732957*a(n-14) -4676754*a(n-15) -588741*a(n-16) +5212512*a(n-17) -814070*a(n-18) +8518395*a(n-19) -12331164*a(n-20) +17284529*a(n-21) -23451075*a(n-22) +25895262*a(n-23) -26065323*a(n-24) +23525073*a(n-25) -18903846*a(n-26) +13767022*a(n-27) -9035040*a(n-28) +5322504*a(n-29) -2815583*a(n-30) +1324926*a(n-31) -547305*a(n-32) +195707*a(n-33) -59001*a(n-34) +14325*a(n-35) -2634*a(n-36) +339*a(n-37) -27*a(n-38) +a(n-39) for n>43
%e Some solutions for n=4
%e ..1..0..0..0. .0..0..1..0. .0..0..0..1. .0..1..1..1. .0..1..1..0
%e ..0..0..1..1. .1..0..1..0. .0..1..1..1. .0..0..1..1. .1..1..1..1
%e ..1..1..1..0. .1..0..1..1. .0..1..0..1. .1..1..1..0. .0..1..0..0
%e ..1..1..0..1. .0..1..1..1. .1..1..1..0. .0..0..1..1. .0..1..0..0
%Y Cf. A283522.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 09 2017