login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283510 Expansion of exp( Sum_{n>=1} A283369(n)/n*x^n ) in powers of x. 3
1, 1, 257, 531698, 4295531890, 95371863221411, 4738477950914329100, 459991301719292572342573, 79228623778497392212453912974, 22528478894247280128054776211273960, 10000022549030658394108744658459680045250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..120

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^(4*k)).

a(n) = (1/n)*Sum_{k=1..n} A283369(k)*a(n-k) for n > 0.

a(n) ~ n^(4*n) * (1 + exp(-4)/n^4). - Vaclav Kotesovec, Mar 17 2017

MATHEMATICA

CoefficientList[Series[Product[1/(1 - x^k)^(k^(4k)), {k, 1, 10}], {x, 0, 10}], x] (* Indranil Ghosh, Mar 17 2017 *)

PROG

(PARI) A(n) = sumdiv(n, d, d^(4*d + 1));

a(n) = if(n<1, 1, (1/n) * sum(k=1, n, A(k) * a(n - k)));

for(n=0, 10, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 17 2017

CROSSREFS

Cf. Product_{k>=1} 1/(1 - x^k)^(k^(m*k)): A000041 (m=0), A023880 (m=1), A283579 (m=2), A283580 (m=3), this sequence (m=4).

Cf. A283803 (Product_{k>=1} (1 - x^k)^(k^(4*k))).

Sequence in context: A219548 A218723 A097736 * A103349 A291506 A275098

Adjacent sequences:  A283507 A283508 A283509 * A283511 A283512 A283513

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Mar 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 01:46 EST 2020. Contains 331328 sequences. (Running on oeis4.)