|
|
A283496
|
|
Numbers k such that (19*10^k - 37)/9 is prime.
|
|
0
|
|
|
1, 4, 6, 10, 16, 37, 60, 64, 78, 96, 166, 256, 1294, 1398, 2044, 2244, 5080, 7464, 8041, 17929, 18144, 29080, 32623
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For k>1, numbers such that the digit 2 followed by k-2 occurrences of the digit 1 followed by the digits 07 is prime (see Example section).
a(24) > 2*10^5.
|
|
LINKS
|
Table of n, a(n) for n=1..23.
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 21w07.
|
|
EXAMPLE
|
4 is in this sequence because (19*10^4 - 37)/9 = 21107 is prime.
Initial terms and primes associated:
a(1) = 1, 17;
a(2) = 4, 21107;
a(3) = 6, 2111107;
a(4) = 10, 21111111107;
a(5) = 16, 21111111111111107; etc.
|
|
MATHEMATICA
|
Select[Range[1, 100000], PrimeQ[(19*10^# - 37)/9] &]
|
|
PROG
|
(PARI) isok(n) = isprime((19*10^n - 37)/9); \\ Indranil Ghosh, Mar 09 2017
|
|
CROSSREFS
|
Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A050887 A078642 A032416 * A117149 A165186 A310590
Adjacent sequences: A283493 A283494 A283495 * A283497 A283498 A283499
|
|
KEYWORD
|
nonn,more,hard
|
|
AUTHOR
|
Robert Price, Mar 08 2017
|
|
STATUS
|
approved
|
|
|
|