%I #9 Feb 21 2019 08:19:03
%S 0,0,2,12,64,312,1460,6624,29394,128264,552384,2353888,9943896,
%T 41703328,173822258,720671156,2974187392,12224902712,50069348140,
%U 204417445696,832198630882,3379257614032,13690075484800,55344113101440
%N Number of n X 2 0..1 arrays with no 1 equal to more than three of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
%H R. H. Hardin, <a href="/A283488/b283488.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 16*a(n-3) - 13*a(n-4) - 10*a(n-5) - 13*a(n-6) - 8*a(n-7) - 3*a(n-8) - 2*a(n-9) - a(n-10).
%F Empirical g.f.: 2*x^3*(1 - x - x^2)*(1 + x + x^2) / (1 - 3*x - 3*x^2 - x^3 - x^4 - x^5)^2. - _Colin Barker_, Feb 21 2019
%e Some solutions for n=4:
%e ..0..1. .0..1. .1..1. .1..0. .1..1. .0..0. .0..1. .1..1. .1..1. .0..0
%e ..1..1. .1..1. .1..1. .1..1. .1..1. .0..1. .0..1. .1..1. .1..1. .1..1
%e ..1..1. .1..1. .1..0. .1..1. .1..0. .1..1. .1..1. .1..0. .1..0. .1..1
%e ..0..0. .0..1. .1..1. .1..0. .0..1. .1..1. .1..1. .0..0. .1..0. .1..0
%Y Column 2 of A283494.
%K nonn
%O 1,3
%A _R. H. Hardin_, Mar 08 2017