login
A283434
Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 5 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
6
1, 1, 5, 1, 15, 175, 1, 75, 4125, 496875, 1, 325, 98125, 61140625, 38147265625, 1, 1625, 2446875, 7632421875, 23841923828125, 74505821533203125, 1, 7875, 61046875, 953736328125, 14901161376953125, 232830644622802734375, 3637978807094573974609375
OFFSET
0,3
COMMENTS
Computed using Burnside's orbit-counting lemma.
LINKS
M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
FORMULA
For even n and m: T(n,m) = (5^(m*n) + 3*5^(m*n/2))/4;
for even n and odd m: T(n,m) = (5^(m*n) + 5^((m*n+n)/2) + 2*5^(m*n/2))/4;
for odd n and even m: T(n,m) = (5^(m*n) + 5^((m*n+m)/2) + 2*5^(m*n/2))/4;
for odd n and m: T(n,m) = (5^(m*n) + 5^((m*n+n)/2) + 5^((m*n+m)/2) + 5^((m*n+1)/2))/4.
EXAMPLE
Triangle begins:
============================================================================
n\m | 0 1 2 3 4 5
----|-----------------------------------------------------------------------
0 | 1
1 | 1 5
2 | 1 15 175
3 | 1 75 4125 496875
4 | 1 325 98125 61140625 38147265625
5 | 1 1625 2446875 7632421875 23841923828125 74505821533203125
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
María Merino, Imanol Unanue, Yosu Yurramendi, May 15 2017
STATUS
approved