|
|
A283417
|
|
Number T(n,k) of triangle-free graphs on n unlabeled nodes with exactly k connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
|
|
3
|
|
|
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 3, 2, 1, 1, 0, 6, 4, 2, 1, 1, 0, 19, 10, 5, 2, 1, 1, 0, 59, 28, 11, 5, 2, 1, 1, 0, 267, 90, 32, 12, 5, 2, 1, 1, 0, 1380, 363, 100, 33, 12, 5, 2, 1, 1, 0, 9832, 1784, 397, 104, 34, 12, 5, 2, 1, 1, 0, 90842, 11770, 1892, 407, 105, 34, 12, 5, 2, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,12
|
|
LINKS
|
Alois P. Heinz, Rows n = 0..17, flattened
Index entries for triangles generated by the Multiset Transformation
|
|
FORMULA
|
G.f.: Product_{j>=1} 1/(1-y*x^j)^A024607(j).
|
|
EXAMPLE
|
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 3, 2, 1, 1;
0, 6, 4, 2, 1, 1;
0, 19, 10, 5, 2, 1, 1;
0, 59, 28, 11, 5, 2, 1, 1;
0, 267, 90, 32, 12, 5, 2, 1, 1;
0, 1380, 363, 100, 33, 12, 5, 2, 1, 1;
0, 9832, 1784, 397, 104, 34, 12, 5, 2, 1, 1;
...
|
|
CROSSREFS
|
Columns k=0-1 give: A000007, A024607.
Row sums give A006785.
Sequence in context: A287576 A035103 A155033 * A107889 A138384 A129172
Adjacent sequences: A283414 A283415 A283416 * A283418 A283419 A283420
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Alois P. Heinz, Apr 14 2017
|
|
STATUS
|
approved
|
|
|
|