login
A283415
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its horizontal, vertical and antidiagonal neighbors.
8
2, 4, 4, 8, 16, 8, 16, 61, 61, 16, 32, 236, 416, 236, 32, 64, 912, 2944, 2944, 912, 64, 128, 3525, 20744, 39268, 20744, 3525, 128, 256, 13624, 146228, 519252, 519252, 146228, 13624, 256, 512, 52656, 1030788, 6865368, 12806920, 6865368, 1030788, 52656, 512
OFFSET
1,1
COMMENTS
Table starts
....2......4.........8...........16..............32................64
....4.....16........61..........236.............912..............3525
....8.....61.......416.........2944...........20744............146228
...16....236......2944........39268..........519252...........6865368
...32....912.....20744.......519252........12806920.........315717408
...64...3525....146228......6865368.......315717408.......14511646624
..128..13624...1030788.....90803472......7790355688......668024193788
..256..52656...7266120...1200890168....192182078748....30738576483000
..512.203513..51219756..15882218184...4741143038544..1414483814666200
.1024.786568.361053936.210047690772.116964083503632.65089911870493672
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +a(n-3) +a(n-4) +a(n-5)
k=3: a(n) = 5*a(n-1) +13*a(n-2) +10*a(n-3) +a(n-4) +2*a(n-5) for n>7
k=4: [order 13] for n>15
k=5: [order 37] for n>39
k=6: [order 72] for n>77
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..1. .0..1..0..0. .0..1..1..0. .0..0..0..1. .0..1..1..0
..0..1..0..1. .0..0..1..0. .1..0..1..0. .0..0..0..0. .0..1..1..0
..1..1..0..1. .1..0..1..1. .0..0..0..0. .1..1..0..0. .0..0..1..1
..1..0..0..1. .1..0..0..1. .1..0..0..0. .0..0..0..0. .1..0..1..0
CROSSREFS
Column 1 is A000079.
Sequence in context: A282399 A297374 A297102 * A283857 A227442 A282316
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 07 2017
STATUS
approved