login
A283343
Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
1
0, 26, 572, 7804, 106310, 1354928, 16714556, 201420678, 2383832160, 27824093298, 321172238658, 3673720138432, 41704604879690, 470412062965664, 5277001796062030, 58915371919958224, 655029886521975970
OFFSET
1,2
COMMENTS
Column 4 of A283347.
LINKS
FORMULA
Empirical: a(n) = 16*a(n-1) -20*a(n-2) -260*a(n-3) -1402*a(n-4) -642*a(n-5) +2210*a(n-6) +14686*a(n-7) -22971*a(n-8) -12276*a(n-9) -135115*a(n-10) +457628*a(n-11) -589163*a(n-12) +1592124*a(n-13) -5199987*a(n-14) +11546098*a(n-15) -25014241*a(n-16) +59528938*a(n-17) -134183673*a(n-18) +292740174*a(n-19) -619589652*a(n-20) +1221520984*a(n-21) -2269849168*a(n-22) +4040049416*a(n-23) -6659990695*a(n-24) +9756671026*a(n-25) -12470420635*a(n-26) +13724970116*a(n-27) -12836061141*a(n-28) +10304073698*a(n-29) -7475423051*a(n-30) +5092676376*a(n-31) -3088317260*a(n-32) +1568521200*a(n-33) -714987914*a(n-34) +316968660*a(n-35) -114489157*a(n-36) +25044786*a(n-37) -2313441*a(n-38)
EXAMPLE
Some solutions for n=4
..1..0..0..0. .1..0..1..1. .0..1..1..1. .1..1..1..0. .1..1..0..1
..1..1..0..1. .0..1..0..0. .0..1..0..0. .1..0..0..0. .0..1..1..1
..1..0..1..0. .0..0..0..1. .0..0..1..1. .0..1..1..0. .0..0..0..0
..0..0..1..1. .1..1..1..1. .1..0..0..1. .0..1..0..0. .1..1..0..1
CROSSREFS
Cf. A283347.
Sequence in context: A323492 A265461 A257518 * A160059 A323117 A293612
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 05 2017
STATUS
approved