This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283332 a(n) = (Sum_{j=1..(K-1)/2} a(n-2*j+1)*a(n-2*j))/a(n-K) with a(1),...,a(K)=1, where K=9. 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 7, 31, 223, 6943, 1548511, 10751318815, 16648535451082975, 178993712437422911994993439, 744995791758846743179449146618806505170999, 19049937502453316579424394593659892304405504872785268490952081866996 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 REFERENCES Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016; https://pdfs.semanticscholar.org/fdeb/e20954dacb7ec7a24afe2cf491b951c5a28d.pdf. Also (better) http://www.math.rutgers.edu/~zeilberg/Theses/MatthewRussellThesis.pdf LINKS Seiichi Manyama, Table of n, a(n) for n = 1..25 MATHEMATICA a[n_]:=If[n<10, 1, Sum[a[n - 2j + 1]*a[n - 2j], {j, 4}]/a[n - 9]]; Table[a[n], {n, 1, 20}] (* Indranil Ghosh, Mar 18 2017 *) PROG (PARI) a(n)= if(n<10, 1, sum(j=1, 4, a(n - 2*j + 1)*a(n - 2*j))/a(n - 9)); for(n=1, 20, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017 CROSSREFS Sequence in context: A123801 A156228 A218959 * A000289 A241426 A271676 Adjacent sequences:  A283329 A283330 A283331 * A283333 A283334 A283335 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 17 2017 EXTENSIONS More terms from Seiichi Manyama, Mar 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 04:27 EDT 2018. Contains 316519 sequences. (Running on oeis4.)