OFFSET
1,1
COMMENTS
For the first 10^6 terms, the maximum value of a(n) is 64 and the values of b(n) = least k such that a(k) = 2*n are 1, 3, 13, 12, 105, 97, 126, 96, 1681, 1552, 1746, 1537, 1734, 1926, 4050, 1536, 53793, 49665, 53890, 49185, 53862, 57024, 55616, 49153, 55488, 55302, 81249, 61446, 83619, 115214, 162000, 49152; note that b(2^n) = 3*2^((n+2)*(n-1)/2) for n = 1 to 5.
This sequence is a_{1,2}(n) where a_{r,s}(n) = a_{r,s}(floor(n/a_{r,s}(n-r))) + a_{r,s}(floor(n/a_{r,s}(n-s))) with a_{r,s}(n) = 2 for n <= s (r < s). - Altug Alkan, Jun 28 2020
LINKS
Altug Alkan, Table of n, a(n) for n = 1..10000
Altug Alkan, Alternative Graph of A283207
Rémy Sigrist, Scatterplot of the first 2^34 terms
EXAMPLE
a(5) = 4 because a(5) = a(floor(5/a(4))) + a(floor(5/a(3))) = a(floor(5/4)) + a(floor(5/4)) = a(1) + a(1) = 4.
MAPLE
A:= Vector(100):
A[1]:= 2: A[2]:= 2:
for n from 3 to 100 do A[n]:= A[floor(n/A[n-1])] + A[floor(n/A[n-2])] od:
convert(A, list); # Robert Israel, Jun 23 2020
MATHEMATICA
a[1] = a[2] = 2; a[n_] := a[n] = a[Floor[n/a[n - 1]]] + a[Floor[n/a[n - 2]]]; Array[a, 120] (* Michael De Vlieger, Mar 06 2017 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 03 2017
STATUS
approved