%I #16 Mar 04 2017 02:46:34
%S 1,13327,1395857215,637056434385865,893591647147188285577,
%T 3104750712141723393459934903,23094793819000630529788087185212647,
%U 331114050237261411471736187067402011971825,8452444659410086110360476363825233533247222327537,361084373753302872550305348321621374196786909194880037375
%N Number of set partitions of unique elements from an n X 6 matrix where elements from the same row may not be in the same partition.
%H Indranil Ghosh, <a href="/A283155/b283155.txt">Table of n, a(n) for n = 1..50</a>
%H M. Riedel, <a href="http://math.stackexchange.com/questions/2165093/">Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition</a>
%F a(n) = m!^n Sum_{p=1..n*m} (Choose(p,m)^n/p!) Sum_{k=0..n*m-p} (-1)^k/k! with m=6.
%t Table[(6!^n)*Sum[Binomial[p,6]^n/p! * Sum[(-1)^k/k!,{k,0,6n-p}],{p,1,6n}],{n,1,10}] (* _Indranil Ghosh_, Mar 04 2017 *)
%o (PARI) a(n) = (6!^n)*sum(p=1,6*n,binomial(p,6)^n/p! * sum(k=0,6*n-p,(-1)^k/k!)); \\ _Indranil Ghosh_, Mar 04 2017
%Y Cf. A283153, A283154.
%K nonn
%O 1,2
%A _Marko Riedel_, Mar 01 2017