login
Expansion of exp( Sum_{n>=1} sigma(8*n)*x^n/n ) in powers of x.
6

%I #23 Mar 20 2017 11:28:06

%S 1,15,128,815,4289,19663,81057,306799,1081986,3594142,11338690,

%T 34193246,99080387,277046893,750192227,1973050940,5053026949,

%U 12628736331,30859262181,73849589786,173333118663,399528823032,905418038792,2019454523623,4437187104779

%N Expansion of exp( Sum_{n>=1} sigma(8*n)*x^n/n ) in powers of x.

%H Seiichi Manyama, <a href="/A283120/b283120.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: Product_{n>=1} (1 - x^(2*n))^7/(1 - x^n)^15.

%F a(n) = (1/n)*Sum_{k=1..n} sigma(8*k)*a(n-k). - _Seiichi Manyama_, Mar 05 2017

%F a(n) ~ 529 * 23^(1/4) * exp(sqrt(23*n/3)*Pi) / (73728 * 3^(1/4) * n^(11/4)). - _Vaclav Kotesovec_, Mar 20 2017

%e G.f.: A(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 + ...

%e log(A(x)) = 15*x + 31*x^2/2 + 60*x^3/3 + 63*x^4/4 + 90*x^5/5 + 124*x^6/6 + 120*x^7/7 + 127*x^8/8 + ... + sigma(8*n)*x^n/n + ...

%Y Cf. A283122 (sigma(8*n)), A283168 (exp( Sum_{n>=1} -sigma(8*n)*x^n/n )).

%Y Cf. A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), A283119 (k=6), A283077 (k=7), this sequence (k=8), A283121 (k=9).

%K nonn

%O 0,2

%A _Seiichi Manyama_, Mar 01 2017